These functions provide default values for various settings in the
dRiftDM package.
Usage
drift_dm_approx_error()
drift_dm_medium_approx_error()
drift_dm_small_approx_error()
drift_dm_rough_approx_error()
drift_dm_robust_prm()
drift_dm_default_rounding()
drift_dm_default_probs()
drift_dm_default_n_bins()
drift_dm_default_b_coding()
drift_dm_skip_if_contr_low()
drift_dm_n_id_trunc_warn()Details
drift_dm_approx_error(): Returns the default approximation error for precise calculations (1e-20).drift_dm_medium_approx_error(): Returns a 'medium' level of approximation error (1e-06).drift_dm_small_approx_error(): Returns a 'small' level of approximation error (.01).drift_dm_rough_approx_error(): Returns a rough level of approximation error (.1).drift_dm_robust_prm(): Returns a value that is added to the PDFs after convolution with the non-decision time to make parameter estimation and the evaluation of the log-likelihood more robust (1e-8).drift_dm_default_rounding(): Returns the default rounding precision for numerical outputs (3).drift_dm_default_probs(): Returns the default sequence of probabilities for quantiles (0.1, 0.2, ..., 0.9)drift_dm_default_n_bins(): Returns the default number of bins for a CAF (5)drift_dm_default_b_coding(): Returns the default boundary coding (list(column = "Error", u_name_value = c("corr" = 0), l_name_value = c("err" = 1))drift_dm_skip_if_contr_low(): returns the value 0.0001. If a PDF integrates to a value lower than that (i.e., if there is almost no contribution of a PDF; most likely this will be pdf_l), then summary functions returned bycalc_stats()might contain the value NA for the respective PDF.drift_dm_n_id_trunc_warn(): returns 15. If there are warnings relevant to multiple participants, the printed IDs are truncated at 15.
