Functions to obtain the probability density functions (PDFs) of a model. These PDFs represent the convolution of the first-passage-time (decision time) with the non-decision time.
Usage
pdfs(object, ...)
# S3 method for class 'drift_dm'
pdfs(object, ...)
# S3 method for class 'fits_agg_dm'
pdfs(object, ...)Arguments
- object
an object of type drift_dm or
fits_agg_dm(seeestimate_dm()).- ...
additional arguments passed down to the specific method.
Value
A list with the entries:
pdfs, contains another named list with entries corresponding to the conditions of the model (seeconds()). Each of these elements is another named list, containing the entriespdf_uandpdf_l, which are numeric vectors for the PDFs of the upper and lower boundary, respectively.t_vec, containing a numeric vector of the time domain.
Details
If the model has not been evaluated, re_evaluate_model() is
called before returning the PDFs.
Examples
# get a pre-built model for demonstration purpose
a_model <- dmc_dm(dx = .01, dt = .005)
str(pdfs(a_model))
#> List of 2
#> $ pdfs :List of 2
#> ..$ comp :List of 2
#> .. ..$ pdf_u: num [1:601] 1e-08 1e-08 1e-08 1e-08 1e-08 ...
#> .. ..$ pdf_l: num [1:601] 1e-08 1e-08 1e-08 1e-08 1e-08 ...
#> ..$ incomp:List of 2
#> .. ..$ pdf_u: num [1:601] 1e-08 1e-08 1e-08 1e-08 1e-08 ...
#> .. ..$ pdf_l: num [1:601] 1e-08 1e-08 1e-08 1e-08 1e-08 ...
#> $ t_vec: num [1:601] 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 ...
