Skip to contents

Functions to obtain the probability density functions (PDFs) of a model. These PDFs represent the convolution of the first-passage-time (decision time) with the non-decision time.

Usage

pdfs(object, ...)

# S3 method for class 'drift_dm'
pdfs(object, ...)

# S3 method for class 'fits_agg_dm'
pdfs(object, ...)

Arguments

object

an object of type drift_dm or fits_agg_dm (see estimate_dm()).

...

additional arguments passed down to the specific method.

Value

A list with the entries:

  • pdfs, contains another named list with entries corresponding to the conditions of the model (see conds()). Each of these elements is another named list, containing the entries pdf_u and pdf_l, which are numeric vectors for the PDFs of the upper and lower boundary, respectively.

  • t_vec, containing a numeric vector of the time domain.

Details

If the model has not been evaluated, re_evaluate_model() is called before returning the PDFs.

Examples

# get a pre-built model for demonstration purpose
a_model <- dmc_dm(dx = .01, dt = .005)
str(pdfs(a_model))
#> List of 2
#>  $ pdfs :List of 2
#>   ..$ comp  :List of 2
#>   .. ..$ pdf_u: num [1:601] 1e-08 1e-08 1e-08 1e-08 1e-08 ...
#>   .. ..$ pdf_l: num [1:601] 1e-08 1e-08 1e-08 1e-08 1e-08 ...
#>   ..$ incomp:List of 2
#>   .. ..$ pdf_u: num [1:601] 1e-08 1e-08 1e-08 1e-08 1e-08 ...
#>   .. ..$ pdf_l: num [1:601] 1e-08 1e-08 1e-08 1e-08 1e-08 ...
#>  $ t_vec: num [1:601] 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 ...