Extract or set the coefficients/parameters of drift_dm or
fits_ids_dm
objects
Arguments
- object
an object of type drift_dm or
fits_ids_dm
(see load_fits_ids).- ...
additional arguments passed to the respective method
- value
numerical, a vector with valid values to update the model's parameters. Must match with the number of (unique and free) parameters.
- eval_model
logical, indicating if the model should be re-evaluated or not when updating the parameters (see re_evaluate_model). Default is
FALSE
.- select_unique
logical, indicating if only those parameters shall be returned that are considered unique (e.g., when a parameter is set to be identical across three conditions, then the parameter is only returned once). Default is
TRUE
. This will also return only those parameters that are estimated.
Value
For objects of type drift_dm, coefs()
returns either a named
numeric vector for select_unique = TRUE
, or the prms_matrix
matrix for
select_unique = FALSE
. If custom parameters exist, they are added to the
matrix.
For objects of type fits_ids_dm
, coefs()
returns a data.frame. If
select_unique = TRUE
, the columns will be the (unique, free) parameters,
together with a column coding IDs
. If select_unique = FALSE
, the columns
will be the parameters as listed in the columns of prms_matrix
(see
drift_dm), together with columns coding the conditions and
IDs
. The returned data.frame has the class label coefs_dm
to easily
plot histograms for each parameter (see hist.coefs_dm).
Details
coef()
are methods for the generic coef
function; coefs<-()
is a
generic replacement function, currently supporting objects of type
drift_dm.
The argument value
supplied to the coefs<-()
function must match with
the vector returned from coef(<object>)
. It is possible to
update just part of the (unique) parameters.
Whenever the argument select_unique = TRUE
, dRiftDM tries to provide
unique parameter labels.
Examples
# get a pre-built model and a data set for demonstration purpose
# (when creating the model, set the discretization to reasonable values)
a_model <- dmc_dm(t_max = 1.5, dx = .0025, dt = .0025)
coef(a_model) # gives the free and unique parameters
#> muc b non_dec sd_non_dec tau A alpha
#> 4.00 0.60 0.30 0.02 0.04 0.10 4.00
coef(a_model, select_unique = FALSE) # gives the entire parameter matrix
#> muc b non_dec sd_non_dec tau a A alpha peak_l
#> comp 4 0.6 0.3 0.02 0.04 2 0.1 4 0.04
#> incomp 4 0.6 0.3 0.02 0.04 2 -0.1 4 0.04