Skip to contents

Summary and printing methods for objects of the class drift_dm, resulting from a call to drift_dm.

Usage

# S3 method for class 'drift_dm'
summary(object, ...)

# S3 method for class 'summary.drift_dm'
print(x, ..., round_digits = drift_dm_default_rounding())

Arguments

object

An object of class drift_dm

...

additional arguments passed forward to the respective method

x

an object of type summary.drift_dm

round_digits

Integer specifying the number of decimal places for rounding in the printed summary. Default is 3.

Value

summary.drift_dm() returns a list of class summary.drift_dm (see the Details section summarizing each entry of this list).

print.summary.drift_dm() returns invisibly the summary.drift_dm object.

Details

The summary.drift_dm() function constructs a summary list with detailed information about the drift_dm object, including:

  • class: The class type of the drift_dm object.

  • summary_flex_prms: A summary of the flex_prms object in the model (see summary.flex_prms).

  • prms_solve: Parameters used for solving the model (see prms_solve).

  • solver: The solver used for model fitting.

  • obs_data: A summary table of observed response time data, if available, by response type (upper/lower boundary responses). Includes sample size, mean, and quantiles.

  • fit_stats: Fit statistics, if available, including log-likelihood, AIC, and BIC values.

The print.summary.drift_dm() function displays this summary in a formatted way.

Examples

# get a pre-built model for demonstration purpose
a_model <- dmc_dm(t_max = 1.5, dx = .0025, dt = .0025)
sum_obj <- summary(a_model)
print(sum_obj, round_digits = 2)
#> Class(es): dmc_dm, drift_dm
#> 
#> Current Parameter Matrix:
#>        muc   b non_dec sd_non_dec  tau a    A alpha
#> comp     4 0.6     0.3       0.02 0.04 2  0.1     4
#> incomp   4 0.6     0.3       0.02 0.04 2 -0.1     4
#> 
#> Unique Parameters:
#>        muc b non_dec sd_non_dec tau a A alpha
#> comp   1   2 3       4          5   0 6 7    
#> incomp 1   2 3       4          5   0 d 7    
#> 
#> Special Dependencies:
#> A ~ incomp == -(A ~ comp)
#> 
#> Custom Parameters:
#>        peak_l
#> comp     0.04
#> incomp   0.04
#> 
#> Observed Data:
#> NULL
#> 
#> Fit Indices:
#> NULL
#> -------
#> Solver: kfe
#> Settings: sigma=1, t_max=1.5, dt=0.002, dx=0.002, nt=600, nx=800

# more information is provided when we add data to the model
obs_data(a_model) <- dmc_synth_data # (data set comes with dRiftDM)
summary(a_model)
#> Class(es): dmc_dm, drift_dm
#> 
#> Current Parameter Matrix:
#>        muc   b non_dec sd_non_dec  tau a    A alpha
#> comp     4 0.6     0.3       0.02 0.04 2  0.1     4
#> incomp   4 0.6     0.3       0.02 0.04 2 -0.1     4
#> 
#> Unique Parameters:
#>        muc b non_dec sd_non_dec tau a A alpha
#> comp   1   2 3       4          5   0 6 7    
#> incomp 1   2 3       4          5   0 d 7    
#> 
#> Special Dependencies:
#> A ~ incomp == -(A ~ comp)
#> 
#> Custom Parameters:
#>        peak_l
#> comp     0.04
#> incomp   0.04
#> 
#> Observed Data:
#>              min. 1st qu. median  mean 3rd qu.  max.   n
#> corr comp   0.331   0.436  0.479 0.507   0.549 1.075 292
#> corr incomp 0.313   0.474  0.528 0.543   0.592 0.879 268
#> err comp    0.428   0.458  0.526 0.564   0.621 0.871   8
#> err incomp  0.302   0.398  0.452 0.458   0.498 0.771  32
#> 
#> Fit Indices:
#> NULL
#> -------
#> Solver: kfe
#> Settings: sigma=1, t_max=1.5, dt=0.002, dx=0.002, nt=600, nx=800

# finally: fit indices are provided once we evaluate the model
a_model <- re_evaluate_model(a_model)
summary(a_model)
#> Class(es): dmc_dm, drift_dm
#> 
#> Current Parameter Matrix:
#>        muc   b non_dec sd_non_dec  tau a    A alpha
#> comp     4 0.6     0.3       0.02 0.04 2  0.1     4
#> incomp   4 0.6     0.3       0.02 0.04 2 -0.1     4
#> 
#> Unique Parameters:
#>        muc b non_dec sd_non_dec tau a A alpha
#> comp   1   2 3       4          5   0 6 7    
#> incomp 1   2 3       4          5   0 d 7    
#> 
#> Special Dependencies:
#> A ~ incomp == -(A ~ comp)
#> 
#> Custom Parameters:
#>        peak_l
#> comp     0.04
#> incomp   0.04
#> 
#> Observed Data:
#>              min. 1st qu. median  mean 3rd qu.  max.   n
#> corr comp   0.331   0.436  0.479 0.507   0.549 1.075 292
#> corr incomp 0.313   0.474  0.528 0.543   0.592 0.879 268
#> err comp    0.428   0.458  0.526 0.564   0.621 0.871   8
#> err incomp  0.302   0.398  0.452 0.458   0.498 0.771  32
#> 
#> Fit Indices:
#> Log_Like      AIC      BIC 
#>  137.152 -260.304 -229.526 
#> -------
#> Solver: kfe
#> Settings: sigma=1, t_max=1.5, dt=0.002, dx=0.002, nt=600, nx=800