
Summary and Printing for fits_ids_dm Objects
Source:R/formatting_fits_ids_dm.R
summary.fits_ids_dm.Rd
Methods for summarizing and printing objects of the class fits_ids_dm
,
which contain multiple fits across individuals.
Usage
# S3 method for class 'summary.fits_ids_dm'
print(x, ..., just_header = FALSE, round_digits = drift_dm_default_rounding())
# S3 method for class 'fits_ids_dm'
summary(object, ..., select_unique = FALSE)
Arguments
- x
an object of class
summary.fits_ids_dm
.- ...
additional arguments (currently unused).
- just_header
logical, if
TRUE
only print the header information without details. Default isFALSE
.- round_digits
an integer, specifying the number of decimal places for rounding in the printed summary. Default is 3.
- object
an object of class
fits_ids_dm
, generated by a call to load_fits_ids.- select_unique
logical, passed to
coef.drift_dm()
.
Value
summary.fits_ids_dm()
returns a list of class summary.fits_ids_dm
(see
the Details section summarizing each entry of this list).
print.summary.fits_ids_dm()
returns invisibly the summary.fits_ids_dm
object.
Details
The summary.fits_ids_dm
function creates a summary object. The contents of
this summary object depends on whether the user supplies a fits_ids_dm
object that was created with estimate_dm()
or the deprecated
function load_fits_ids()
.
In the first case, the object contains:
summary_drift_dm_obj: A list with information about the underlying drift diffusion model (as returned by
summary.drift_dm()
).prms: All parameter values across all conditions (essentially a call to coef() with the argument select_unique = FALSE).
stats: A named list of matrices for each condition, including mean and standard error for each parameter.
obs_data: A list providing the number of individual participants and the average number of trials per condition across participants.
optimizer: A string of the optimizer that was used
conv_info: A list providing a summary of the convergance and messages for all IDs
In the second case, the object contains:
lower and upper: Lower and upper bounds of the search space.
model_type: Description of the model type, based on class information.
prms: All parameter values across all conditions (essentially a call to coef() with the argument select_unique = FALSE).
stats: A named list of matrices for each condition, including mean and standard error for each parameter.
N: The number of individuals.
The print.summary.fits_ids_dm
function displays the summary object in a
formatted manner.
Examples
# get an auxiliary object of type fits_ids_dm for demonstration purpose
all_fits <- get_example_fits("fits_ids_dm")
sum_obj <- summary(all_fits)
print(sum_obj, round_digits = 2)
#> Fit approach: separately - classical
#> Fitted model type: dmc_dm, drift_dm
#> Optimizer: nmkb
#> Convergence: TRUE
#> N Individuals: 3
#> Average Trial Numbers:
#> 168 trials comp; 168 trials incomp
#> Cost Function: neg_log_like
#>
#> Parameter Summary: comp
#> muc b non_dec sd_non_dec tau a A alpha peak_l
#> mean 5.12 0.49 0.32 0.03 0.08 2 0.13 4.99 0.08
#> std_err 0.42 0.07 0.01 0.01 0.02 0 0.03 0.94 0.02
#>
#> Parameter Summary: incomp
#> muc b non_dec sd_non_dec tau a A alpha peak_l
#> mean 5.12 0.49 0.32 0.03 0.08 2 -0.13 4.99 0.08
#> std_err 0.42 0.07 0.01 0.01 0.02 0 0.03 0.94 0.02
#>
#> -------
#> Deriving PDFS:
#> solver: kfe
#> values: sigma=1, t_max=3, dt=0.01, dx=0.01, nt=300, nx=200