Summary and Printing for fits_ids_dm Objects
Source:R/formatting_dm_fits_ids.R
summary.fits_ids_dm.Rd
Methods for summarizing and printing objects of the class fits_ids_dm
,
which contain multiple fits across individuals.
Usage
# S3 method for class 'summary.fits_ids_dm'
print(x, ..., round_digits = drift_dm_default_rounding())
# S3 method for class 'fits_ids_dm'
summary(object, ...)
Arguments
- x
an object of class
summary.fits_ids_dm
.- ...
additional arguments
- round_digits
integer, specifying the number of decimal places for rounding in the printed summary. Default is set to 3.
- object
an object of class
fits_ids_dm
, generated by a call to load_fits_ids.
Value
summary.fits_ids_dm()
returns a list of class summary.fits_ids_dm
(see
the Details section summarizing each entry of this list).
print.summary.fits_ids_dm()
returns invisibly the summary.fits_ids_dm
object.
Details
The summary.fits_ids_dm
function creates a summary object containing:
fit_procedure_name: The name of the fit procedure used.
time_call: Timestamp of the last fit procedure call.
lower and upper: Lower and upper bounds of the search space.
model_type: Description of the model type, based on class information.
prms: All parameter values across all conditions (essentially a call to coef() with the argument select_unique = FALSE).
stats: A named list of matrices for each condition, including mean and standard error for each parameter.
N: The number of individuals.
The print.summary.fits_ids_dm
function displays the summary object in a
formatted manner.
Examples
# get an auxiliary object of type fits_ids_dm for demonstration purpose
all_fits <- get_example_fits_ids()
sum_obj <- summary(all_fits)
print(sum_obj, round_digits = 2)
#> Fit procedure name: aux_example
#> N Individuals: 3
#>
#> Parameter summary: comp
#> muc b non_dec sd_non_dec tau a A alpha peak_l
#> mean 5.30 0.48 0.32 0.03 0.07 2 0.13 4.57 0.07
#> std_err 0.32 0.06 0.01 0.01 0.02 0 0.03 1.23 0.02
#>
#> Parameter summary: incomp
#> muc b non_dec sd_non_dec tau a A alpha peak_l
#> mean 5.30 0.48 0.32 0.03 0.07 2 -0.13 4.57 0.07
#> std_err 0.32 0.06 0.01 0.01 0.02 0 0.03 1.23 0.02
#>
#>
#> Parameter space:
#> muc b non_dec sd_non_dec tau A alpha
#> lower 1 0.2 0.1 0.005 0.02 0.02 3
#> upper 7 1.0 0.6 0.100 0.30 0.30 8
#>
#> -------
#> Fitted model type: dmc_dm, drift_dm
#> Time of (last) call: 2025-January-08_17-52