Summary and corresponding print methods for objects of the class mcmc_dm,
resulting from a call to estimate_bayesian(). mcmc_dm
objects contain MCMC samples for Bayesian parameter estimation of
drift_dm() objects. The summary includes basic parameter
statistics, quantiles, Gelman-Rubin diagnostics, and effective sample sizes.
Usage
# S3 method for class 'mcmc_dm'
summary(object, ..., id = NULL)
# S3 method for class 'summary.mcmc_dm'
print(
x,
...,
round_digits = drift_dm_default_rounding(),
show_statistics = TRUE,
show_quantiles = FALSE,
show_gr = TRUE,
show_eff_n = TRUE
)Arguments
- object
an object of class
mcmc_dm, as returned byestimate_bayesian()- ...
additional arguments passed forward to
coda::summary.mcmc.list().- id
optional single numeric or character, specifying one or more participant IDs to subset
objectin the hierarchical case. Note thatidwill be converted to character, because dimension names of the chains stored inobjectare character. IfNULL, then the function is applied to group-level parameters.- x
an object of class
summary.mcmc_dm, as returned bysummary.mcmc_dm().- round_digits
an integer, defining the number of digits for rounding the output.
- show_statistics
a logical, if
TRUE, print basic parameter statistics (means, SDs, standard errors).- show_quantiles
a logical, if
TRUE, print quantile summary.- show_gr
a logical; if
TRUE, print Gelman-Rubin convergence diagnostics for each parameter.- show_eff_n
a logical, if
TRUE, print effective sample sizes for each parameter.
Value
summary.mcmc_dm() returns an object of class summary.mcmc_dm,
which is a list with the following entries:
general: General information about the MCMC run.statistics: Basic parameter summary statistics.quantiles: Quantiles for each parameter.gr: Gelman-Rubin diagnostics.eff_n: Effective sample sizes.
print.summary.mcmc_dm() prints selected summary components and returns the
input object invisibly.
Details
The summary and diagnostic statistics of the MCMC chains are obtained
using the R package coda.
Examples
mcmc_obj <- get_example_fits("mcmc_dm")
print(mcmc_obj)
#> Sampler: DE-MCMC
#> Hierarchical: FALSE
#> No. Parameters: 3
#> No. Chains: 20
#> Iterations Per Chain: 200
summary(mcmc_obj)
#> Sampler: DE-MCMC
#> Hierarchical: FALSE
#> No. Parameters: 3
#> No. Chains: 20
#> Iterations Per Chain: 200
#>
#> -------
#> Parameter Summary: Basic Statistics
#> Mean SD Naive SE Time-series SE
#> muc 3.082 0.187 0.003 0.010
#> b 0.411 0.013 0.000 0.001
#> non_dec 0.300 0.003 0.000 0.000
#>
#> Gelman-Rubin Statistics
#> muc b non_dec
#> 1.039 1.046 1.048
#>
#> Effective Sample Size
#> muc b non_dec
#> 363.421 353.772 428.942
