Skip to contents

Summary and corresponding printing methods for traces_dm and traces_dm_list objects, resulting from a call to simulate_traces(). Here, traces_dm objects are entries of the returned list.

Usage

# S3 method for class 'traces_dm'
summary(object, ...)

# S3 method for class 'summary.traces_dm'
print(x, ..., round_digits = drift_dm_default_rounding())

# S3 method for class 'traces_dm_list'
summary(object, ...)

# S3 method for class 'summary.traces_dm_list'
print(x, ..., round_digits = drift_dm_default_rounding())

Arguments

object

an object of class traces_dm or traces_dm_list.

...

additional arguments passed forward.

x

an object of type summary.traces_dm or summary.traces_dm_list.

round_digits

integer, specifying the number of decimal places for rounding in the printed summary. Default is 3.

Value

summary.traces_dm() returns a list of class summary.traces_dm (see the Details section summarizing each entry of this list).

summary.traces_dm_list() returns a list of class summary.traces_dm_list (see the Details section summarizing each entry of this list).

print.summary.traces_dm() returns the summary.traces_dm object invisibly.

print.summary.traces_dm_list() returns the summary.traces_dm_list object invisibly.

Details

The summary.traces_dm() function constructs a summary list with information about the traces_dm object, including:

  • k: The number of traces in the object.

  • add_x: A logical, indicating whether starting values were added.

  • orig_model_class: The class label of the original model.

  • orig_prms: The parameters with which the traces were simulated (for the respective condition)

  • prms_solve: The solver settings with which the traces were simulated.

  • fpt_desc: A summary of the first passage times, including mean, standard deviation, and response probabilities for upper and lower boundaries.

The summary.traces_dm_list() function constructs a summary list with information about the traces_dm_list object, including:

  • k: A numeric vector, providing the number of traces per condition.

  • add_x: A logical vector, indicating whether starting values were added for each condition.

  • orig_prms: A matrix, containing the original parameter values per condition, with which the traces were simulated.

  • orig_model_class: The class label of the original model

  • prms_solve: A matrix of solver settings per condition.

  • fpt_desc: A summary of the first passage times per condition, including mean, standard deviation, and response probabilities for the upper or lower boundary.

The print.summary.traces_dm() and print.summary.traces_dm_list() functions display the summary in a formatted way.

Examples

# get a couple of traces a cross conditions
traces <- simulate_traces(dmc_dm(), k = c(5, 10))
summary(traces)
#> Starting Points Added:
#>   comp incomp 
#>     no     no 
#> 
#> 
#> Number of Traces:
#>   comp incomp 
#>      5     10 
#> 
#> 
#> Summary of First Passage Times:
#>         mean    sd p_corr p_err
#> comp   0.104 0.061      1     0
#> incomp 0.143 0.058      1     0
#> 
#> 
#> Orginal Parameter Values:
#>        muc   b non_dec sd_non_dec  tau a    A alpha
#> comp     4 0.6     0.3       0.02 0.04 2  0.1     4
#> incomp   4 0.6     0.3       0.02 0.04 2 -0.1     4
#> 
#> -------
#> Original Model Class(es): dmc_dm, drift_dm
#> 
#> Settings:
#>        sigma t_max    dt    dx   nt   nx
#> comp       1     3 0.001 0.001 3000 2000
#> incomp     1     3 0.001 0.001 3000 2000
#> 

# get a single traces object
one_traces_obj <- traces[[1]]
summary(one_traces_obj)
#> Starting Points Added: no
#> 
#> Number of Traces: 5
#> 
#> Summary of First Passage Times:
#>   mean     sd p_corr  p_err 
#>  0.104  0.061  1.000  0.000 
#> 
#> 
#> Orginal Parameter Values:
#>        muc          b    non_dec sd_non_dec        tau          a          A 
#>       4.00       0.60       0.30       0.02       0.04       2.00       0.10 
#>      alpha 
#>       4.00 
#> 
#> -------
#> Original Model Class(es): dmc_dm, drift_dm
#> Settings: sigma=1, t_max=3, dt=0.001, dx=0.001, nt=3000, nx=2000