This function creates a drift_dm model that corresponds to the basic Ratcliff Diffusion Model
Usage
ratcliff_dm(
var_non_dec = FALSE,
var_start = FALSE,
var_drift = FALSE,
instr = NULL,
obs_data = NULL,
sigma = 1,
t_max = 3,
dt = 0.0075,
dx = 0.02,
solver = "kfe",
b_coding = NULL
)Arguments
- var_non_dec, var_start, var_drift
logical, indicating whether the model should have a variable non-decision time , starting point (uniform), or drift rate (normally-distributed). (see also
nt_uniformandx_uniformin component_shelf)- instr
optional string with "instructions", see
modify_flex_prms().- obs_data
data.frame, an optional data.frame with the observed data. See obs_data.
- sigma, t_max, dt, dx
numeric, providing the settings for the diffusion constant and discretization (see drift_dm)
- solver
character, specifying the solver.
- b_coding
list, an optional list with the boundary encoding (see b_coding)
Value
An object of type drift_dm (parent class) and ratcliff_dm (child class),
created by the function drift_dm().
Details
The classical Ratcliff Diffusion Model is a diffusion model with a constant
drift rate muc and a constant boundary b. If var_non_dec = FALSE, a
constant non-decision time non_dec is assumed, otherwise a uniform
non-decision time with mean non_dec and range range_non_dec. If
var_start = FALSE, a constant starting point centered between the
boundaries is assumed (i.e., a dirac delta over 0), otherwise a uniform
starting point with mean 0 and range range_start. If var_drift = FALSE,
a constant drift rate is assumed, otherwise a normally distributed drift rate
with mean mu_c and standard deviation sd_muc (can be computationally
intensive). Important: Variable drift rate is only possible with dRiftDM's
mu_constant function. No custom drift rate is yet possible in this case.
References
Ratcliff R (1978). “A theory of memory retrieval.” Psychological Review, 85(2), 59–108. doi:10.1037/0033-295X.85.2.59 .
