
Summary and Printing for fits_agg_dm Objects
Source: R/formatting_fits_agg_dm.R
summary.fits_agg_dm.RdMethods for summarizing and printing objects of the class fits_agg_dm,
which contain model fits based on aggregated data across participants.
Usage
# S3 method for class 'summary.fits_agg_dm'
print(x, ..., just_header = FALSE, round_digits = drift_dm_default_rounding())
# S3 method for class 'fits_agg_dm'
summary(object, ..., select_unique = FALSE)Arguments
- x
an object of class
summary.fits_agg_dm.- ...
additional arguments (currently unused).
- just_header
logical, if
TRUEonly print the header information without details. Default isFALSE.- round_digits
an integer, specifying the number of decimal places for rounding in the printed summary. Default is 3.
- object
an object of class
fits_agg_dm, typically generated by a call to estimate_dm.- select_unique
logical, passed to
coef.drift_dm().
Value
summary.fits_agg_dm() returns a list of class summary.fits_agg_dm
(see Details for its structure).
print.summary.fits_agg_dm() returns the input object invisibly.
Details
The summary.fits_agg_dm function creates a structured summary of a
fits_agg_dm object, containing:
summary_drift_dm_obj: A list with information about the underlying drift diffusion model (as returned by
summary.drift_dm()).prms: Parameter estimates obtained from the model fit. This is equivalent to a call to
coef.drift_dm()on the stored model object.obs_data: A list providing the number of individual participants and the average number of trials per condition across participants.
The print.summary.fits_agg_dm function formats and prints the above summary
in a human-readable form.
Examples
# Load example fit object
fits_agg <- get_example_fits("fits_agg")
sum_obj <- summary(fits_agg)
print(sum_obj, round_digits = 2)
#> Fit approach: aggregated - classical
#> Fitted model type: ratcliff_dm, drift_dm
#> Optimizer: nmkb
#> Convergence: TRUE
#> N Individuals: 3
#> Average Trial Numbers:
#> 100 trials null
#>
#> Parameters:
#> muc b non_dec
#> null 2.89 0.53 0.29
#>
#> Cost Function: rmse
#>
#> Fit Indices:
#> Log_Like Neg_Log_Like AIC BIC RMSE_s RMSE_ms
#> NA NA NA NA 0.01 9.38
#>
#> -------
#> Deriving PDFS:
#> solver: kfe
#> values: sigma=1, t_max=3, dt=0.005, dx=0.005, nt=600, nx=400